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A B S T R A C T

The development of earth-abundance electrocatalyst with high performance for oxygen evolution reaction (OER)
is of paramount importance in sustainable water splitting. Herein, the novel defect-induced nitrogen-doped
carbon-supported Co3O4 nanoparticles is successfully fabricated as OER electrocatalyst (denoted as Co3O4/CN
HNPs) through a wetness-impregnation treatment of Co/polyaniline (PANI) followed by a thermal annealing.
This advanced architecture of Co3O4/CN HNPs can not only improve its conductivity and electrocatalytically
active sites but also generate a large number of oxygen-vacancy defects and crystal defects, which effectively
exert the preponderance in facilitating interfacial electronic transfer and optimizing the adsorption energy for
intermediates, thus imparting the extraordinary activities in catalyzing OER. In addition, there are evidences
demonstrating the formation of C-N coordination bonds through the strong interaction of the interconnected
interface and the generation of pyridinic-N species after the annealing treatment, which enables the structural
stability to get further strengthened and accelerates oxygen releasing for reduction of OER overpotential, re-
spectively. Benefiting from the above desirable properties, the Co3O4/CN HNPs affords a lower overpotential of
290 mV at a current density of 10 mA cm−2 as compared to those of pure Co3O4 and PANI, outperforming
commercial IrO2 and the representative Co3O4-based OER electrocatalysts as recently reported. Moreover, the
Co3O4/CN HNPs also exhibits long durability with negligible activity degeneration at a current density of
10 mA cm−2 for 20 h. .̵

1. Introduction

The existent contradiction between dwindling fossil fuels and in-
creasing energy demands pushes forward the extensive research in the
field of water electrolysis system due to its merits of the low ex-
penditure and the environmental friendliness [1–3]. Electrochemical
OER is investigated as the rate-determining step on account of the
sluggish kinetics in the whole process of water splitting, in which the
exploitment of art-of-the-state electrocatalyst is of great importance for
addressing above-mentioned issues [4–6]. To date, noble-metal-based
materials, such as the iridium dioxides (IrO2) and ruthenium dioxides

(RuO2) are well-known for their high-performance OER activities,
nevertheless, the non-negligible drawbacks of high cost and scarcity
have restricted their commercial-scale application [7–9]. Therefore, it
is highly desirable to search an accessible electrocatalyst as alternative
to achievement of sustainable OER. To date, persistent efforts have
devoted to the investigation of the transition-metal oxides, hydroxides,
selenides, sulfides, nitrides, phosphides, and so on [10–13]. Among
them, the transition-metal oxide Co3O4 is preferentially elected as the
most promising candidate for OER due to its advantages of high
abundance, structure diversity and durability under alkaline conditions
[14,15].
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In reality, the considerable researches have put great efforts into the
development of Co3O4-based catalysts with high surface areas, in-
creased electrical conductivities and unique facet structures, never-
theless, the corresponding OER activities are not desirable as expected
and still need to be further promoted [16–26]. Recently, both experi-
mental and computational studies have demonstrated that the in-
troduction of zero-dimensional point defects (oxygen vacancies) and
two-dimensional planar defects (crystal defects) into the transition-
metal oxides can provide the functionalities to modulate the electronic
structure, enhance the electrical conductivity and optimize the ad-
sorption energy of reactants and intermediates, thus accelerating elec-
trochemical reactions kinetics [27–29]. For instance, Yin et al. [30]
synthesize CoFe2O4 nanosheets with the enriched oxygen defects for
overall water splitting, and demonstrate that alone with oxygen defects
doping, the density of states across the Fermi level increases as well,
which can be conductive to the fast electron transportation. Hu et al.
[31] construct the ultrathin defect-enriched 3D Se-(NiCo)Sx/(OH)x na-
nosheets for overall water splitting, which are more favorable for the
adsorption of H2O and OH−, hence improving the OER and HER ac-
tivities, respectively. Fan et al. [32] fabricate the 3D iron fluoride-oxide
nanoporous films with abundant scattered defects, including interphase
boundaries, stacking faults, oxygen vacancies, and dislocations on the
surfaces/interface, which expose the additional reaction sites and lower
the adsorption energy of the reactant and product in OER and HER.
These results conclude that the existing abundant defects can exert the
Co3O4-based catalysts with suitable chemical properties, electronic
structure and additional electrocatalytically active sites, which can be
considered to be an effective strategy for further enhancing OER ac-
tivities [33,34].

Herein, a pioneering method is demonstrated to accomplish the task
of engineering abundant defects into Co3O4 surface to expose the ad-
ditional active sites. In this contribution, polyaniline (PANI) is pre-
ferentially selected as the self-sacrificing template due to its unique π-
conjugated structures and affluent nitrogen species with lone electron
pairs, which can afford enough coordination sties to anchor Co ions and
thus generate Co/PANI as precursor [35–38]. Then, the corresponding
defects enriched Co3O4/CN HNPs can be successfully synthesized after
an annealing treatment. More concretely, the formation of coupled
carbon materials in this electrocatalyst not only increases the con-
ductivity but also can be rendered as substrate for dispersing and fab-
ricating three-dimensional structure of Co3O4 nanoparticles with
abundant exposed active sites, on which the permeation and the ad-
herence of electrolyte as well as the detachment of oxygen are be-
coming extremely feasible. In addition, the generation of CoeN co-
ordination bonds and existence of pyridinic-N species over the Co3O4/
CN HNPs are instrumental in strengthening structural stability and re-
ducing OER overpotential, respectively. More importantly, there are
abundant oxygen-vacancy defects and crystal defects existing on the
surface of the Co3O4 nanoparticles, which are favorable for significantly
accelerating internal electronic transfer and optimizing the adsorption
energy for intermediates. Aa a consequence, the Co3O4/CN HNPs de-
livers a low overpotential of 290 mV at a current density of
10 mA cm−2 and a small Tafel slope of 59 mV dec-1 in 1 M KOH
electrolyte, superior than those of pure Co3O4, PANI, and commercial
IrO2, which also outperforms the representative Co3O4-based OER
electrocatalysts in Table S1. In addition, the Co3O4/CN HNPs exhibits
unprecedented stability with negligible activity degeneration at a cur-
rent density of 10 mA cm−2 for 20 h.

2. Experimental

2.1. Chemicals

Cobalt acetate tetrahydrate (Co(OAc)2·4H2O, 99.5%), Hydrochloric
acid (HCl, 36.5%), Ammonium persulphate ((NH4)2S2O8, A.R.), Aniline
(99.5%) and Ethanol (99.5%) are obtained from Sinopharm Chemicals.

Potassium hydroxide (KOH, 90%) is purchased from Sigma Aldrich.
Deionized (DI) water is utilized throughout the experiments.

2.2. Chemical synthesis of the PANI, the Co3O4/CN HNPs and the Co3O4

2.2.1. Preparation of the PANI
Polyamine (PANI) is prepared on the process that 1.62 g ammonium

persulfate is dissolved in 5.0 mL deionized water (solution A), and
0.92 mL purified aniline is dissolved in 5.0 mL 2.0 M HCl (solution B).
Solution A is poured quickly into solution B until the stirred mixture is
discolored. Then, the mixture is placed in the cold bath with the tem-
perature of 0 °C for 24 h. After purged with deionized water and
ethanol, the targeted PANI is acquired.

2.2.2. Preparation of the Co3O4/CN HNPs
The Co3O4/CN HNPs is fabricated by combination of both a wet-

ness-impregnation method and subsequent annealing route. In a typical
preparation of the Co3O4/CN HNPs, the required amount of 170 mg Co
(OAc)2·4H2O is diluted to 50 mL with deionized water and then 200 mg
as-obtained PANI is also added which is stirred at 50 °C until all the
water is evaporated. The resultant precipitate (Co/PANI) is dried at
70 °C in air for 12 h and followed by the annealing treatment in the
muffle oven at 300 °C for 4 h with temperature heating rate of 5 °C
min−1.

2.2.3. Preparation of the Co3O4

The weighted 170 mg Co(OAc)2·4H2O is firstly dried in the muffle
oven at 70 °C for 4 h. Subsequently, the sample is calcined in the muffle
oven at 300 °C for 4 h with temperature heating rate of 5 °C min−1.

2.3. Characterization

The morphology of power samples is examined by field-emissions
scanning electron microscopy (FESEM, Ultra 55) and transmission
electron microscopy (TEM, Tecnai G2 20 TWIN). X-ray diffraction
(XRD) patterns are performed from 2θ = 10°~90° by using an X' Pert
Pro X-ray diffractometer equipped with a Cu Kα radiation
(λ = 0.1542 nm) at a current of 40 mA and a voltage of 40 kV, re-
spectively. The chemical composition of the samples is determined by
inductively coupled plasma-atomic emission spectrometry (ICP-AES).
Fourier transform infrared (FTIR) spectra of power samples are mea-
sured by Nicolet Nexus-670 (Nicolet, USA) in the range of
400–4000 cm−1. Raman spectra are collected using a Lab RAM-HR
Confocal Laser Micro Raman Spectrometer with a 532 nm laser diode as
the excitation source. The chemical state of samples are detected by X-
ray photoelectron spectroscopy (XPS) analyses with VG ESCALAB 220I-
XL instrument. All the XPS spectra are corrected according to C 1s line
at 284.8 eV. Curve fitting and background subtraction are accomplished
using Casa XPS software.

2.4. Electrochemical characterization

Electrocatalytic measurements: The electrochemical activities of all
samples for the OER are examined with CHI 660D electrochemical
workstation in a standard three electrode system using the Ag/AgCl
electrode, graphite rod and the catalyst loaded rotating disk electrode
as the reference electrode, counter electrode and working electrode,
respectively. The catalyst ink is prepared by dispersing 5 mg of samples
into 350 μL of ethanol and 95 μL of Nafion solution (5 wt%). Upon
sonication, 5 μL of the catalyst ink is deposited onto 5 mm diameter
polished glassy carbon electrode (Gamry Instruments, Inc.) with a mass
loading of ~0.295 mg cm−2 and dried at room temperature. Linear
sweep voltammetry (LSV) is carried out for the polarization curves with
a sweep rate of 5 mV s−1 in 1 M KOH. The electrochemical impedance
spectroscopy (EIS) measurements are conducted at 1.52 V vs. RHE over
a frequency range 0.01–105 Hz. The double-layer capacitances (Cdl) are
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estimated by cyclic votammetry (CV) in the region of 1.20–1.35 V vs.
RHE at various scan rates of 20, 40, 60, 80 and 100 mV s−1, respec-
tively. By plotting the j (j = −ja jc) at the potential of 1.26 V vs. RHE
against the scan rate, the linear slope Cdl is used to evaluate the elec-
trochemical surface area (ECSA).

3. Results and discussion

The Co3O4/CN HNPs can be synthesized by combination of wetness-
impregnation method and thermal annealing treatment. Briefly stated,
the polyaniline (PANI) is firstly prepared though the polymerization of
aniline in acidic environment [39]. Subsequently, though CoeN co-
ordination, the Co2+ ions from Co(OAc)2·4H2O can be availably an-
chored over the PANI to generate the Co/PANI precursor [38,40].
Eventually, the as-fabricated Co/PANI precursor can be availably con-
verting into the desirable Co3O4/CN HNPs after an annealing treatment.
The FTIR spectra is acquired to recognize the chemical structure of
PANI and Co3O4/CN HNPs, as illustrated in Fig. 1a. Several prominent
characteristic absorption peaks of PANI are observed at 1564 cm−1

(stretching vibration of C]C and C]N in quinoid rings), 1488 cm−1

(stretching mode of C]C in benzenoid rings), 1298 cm−1 (CeN
stretching mode of benzenoid rings), 1242 cm−1 (CeN+ stretching
vibration), 1129 cm−1 (in-plane bending of CeH in quinoid rings),
801 cm−1 (CeH deformation vibrations in the para-substituted ring)
and 503 cm−1 (hydrogen chlorine counter ions), revealing the ac-
complished preparation of PANI under our condition [41–43]. Refer-
ring to Co3O4/CN HNPs, there are no complete characteristic peaks
corresponding to PANI, proving that when the Co/PANI precursor un-
dergoes an annealing treatment, its structure has been subjected to
decomposition as expected. The characteristic peaks of Co3O4/CN HNPs
at 1630 cm−1, 1383 cm−1, 1235 cm−1 and 1152 cm−1, are assigned to
the adsorbed H2O molecules, the CeN stretching vibrations, the CeN+

stretching vibrations and the vibrations of the eN+] structure, re-
spectively [42,44]. Besides this, the peaks located at 574 cm−1 and
664 cm−1 are attributed to the OB3 (B represents Co3+ in an octahedral
site) and the ABO (A represents the Co2+ in a tetrahedral site) vibra-
tions in the spinel lattice of Co3O4 phase [45]. It’s worth mentioning
that there is a new weak characteristic peak appearing at 2170 cm−1,
suggesting the formation of CoeN coordination bond which is triggered
by the strong interaction between CeN substrate and Co3O4 in the
Co3O4/CN HNPs [46]. In this regard, the substitution of O atoms in the
Co3O4 crystal lattice by N atoms corresponds to the decrease of Co
valence state, which results from the fact that N affords a smaller
electronegativity (3.04) than O (3.44) and thus there is less electron
attraction from Co to N than the attraction from Co to O [47]. Corre-
spondingly, the more oxygen vacancies can be generated during the N
doping process to balance the decrease of Co valence state, which is

favorable for enhancing the OER activities [48]. Besides, the high-sta-
bility property of CoeN coordinate bond is also mainly responsible for
the long-term durability of Co3O4/CN HNPs at different OER stages
[37]. Raman spectra is also examined to determine the chemical
structure of PANI and Co3O4/CN HNPs as depicted in Fig. 1b. The
Raman spectra of PANI exhibits several prominent characteristic peaks,
such as 1594 cm−1 (the CeC stretching vibrations of the benzenoid
ring), 1564 cm−1 (the CeC stretching vibrations of the benzenoid ring),
1502 cm−1 (the CeC stretching and NeH deformation vibration re-
lative with the semiquinonoid structures), 1399 cm−1 (the C ~ N+%

stretching vibrations of localized polaronic structures), 1332 cm−1 (the
CeN stretching vibrations of more delocalized polarons), 1244 cm−1

(the benzene-ring deformation vibrations) and 1169 cm−1 (the CeH
bending vibrations of the semi-quinonoid rings). Bands appeared at
806 cm−1, 572 cm−1, 516 cm−1 and 414 cm−1 are due to the proto-
nation of PANI under acid synthesis conditions [42,43]. In contrast,
there is a significantly change in the Raman spectra of Co3O4/CN HNPs.
Thereinto, the remarkable peaks at 670 cm−1 (Eg), 509 cm−1 (E2g) and
466 cm−1 (A1g) are assigned to the Raman active modes of Co3O4 [44],
whereas the noticeable Raman peaks at 1356 cm−1 and 1580 cm−1 are
belonged to D band and G band, which represents the disordered and
the graphitic phases, respectively [49,50], confirming a formation of
microcrystalline graphite structure, which endows the Co3O4/CN HNPs
with high electrical conductivity for OER.

The powder XRD patterns of the as-obtained PANI, Co3O4/CN HNPs,
and Co3O4 are displayed in Fig. 2. As observed, the PANI presents
diffraction peaks at 20.6° and 25.1°, which are indexed to the (1 0 0)
plane of quinoid units about p-p stacking induced partial periodicity
arrangement and (1 1 0) plane of benzenoid units [51]. In the contrast,

Fig. 1. (a) FTIR spectrum of PANI and Co3O4/CN HNPs. (b) Raman spectrum of PANI and Co3O4/CN HNPs.

Fig. 2. XRD patterns of PANI, Co3O4 and Co3O4/CN HNPs.
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there is no characteristic diffraction peaks of PANI that ascribe to
Co3O4/CN HNPs, further indicating that its structure has been dis-
sociated and carbonized in annealing process, which is in accordance
with the FTIR and the Raman results. The prominent peaks of Co3O4/
CN HNPs are located at 2θ values of 19.0°, 31.2°, 36.9°, 38.6°, 44.8°,
55.8°, 59.5°, 65.3° and 77.5° respectively where they are corresponded
to the (1 1 1), (2 2 0), (3 1 1), (2 2 2), (4 0 0), (4 2 2), (5 1 1), (4 4 0) and
(5 3 3) lattice planes of Co3O4 (JCPDS No. 42-1467) [47], which is
consistent with XRD patterns of as-synthesized Co3O4. In addition to
this, it is also found that the Co3O4/CN HNPs delivers the obvious
weakening of Co3O4 characteristic diffraction peaks when compared
with as-synthesized Co3O4, suggesting that the smaller Co3O4 nano-
particles are generated over the CeN substrate in the carbonized pro-
cess of Co/PANI precursor [52], which are in favor of the increased
exposed active sites for the Co3O4/CN HNPs.

The Field Emission Scanning Electron Microscopy (SEM) images and
Transmission Electron Microscopy (TEM) images of PANI are exhibited
in Fig. 3a, d, and Fig. S1a–c, revealing that its coral-like micro-mor-
phology is comprised of the accumulation of ramous microrods with
uniform diameters in the range 60–100 nm and lengths up to
200–500 nm (Fig. S2a, b). After loading of Co2+ ions, there are no
significant variation in morphology as comparison with PANI (Fig. S3a,
b), and there are also no Co2+ ions that are observed to aggregate to
form distinguishable nanoparticles over the Co/PANI precursor (Fig.
S4a, b). Meanwhile, High-angle annular dark-field scanning TEM
(HAADF-STEM) image and corresponding EDX elemental mapping is
executed to further probe the elemental composition and distribution of
Co/PANI precursor as shown in Fig. S5a–d, the Co, N and C elements
are examined to be coexisted in this precursor and the Co is homo-
geneously distributed rather than aggregated throughout the PANI
support. In addition, the SEM images of Co3O4/CN HNPs as shown in
Fig. 3b, e, elucidate that its surface morphology becomes rough and
compacted after an annealing treatment. Moreover, there are also no
discernible Co3O4 nanoparticles generated over CeN substrate as like
the as-synthesized Co3O4, as depicted in Fig. 3c, f. Furthermore, the
corresponding TEM images, high-resolution TEM (HRTEM) images and
selected-area electron diffraction (SAED) of Co3O4/CN HNPs are dis-
played in Fig. 4a–g, respectively. More concretely, the lower-magnifi-
cation TEM images in Fig. 4a, b clearly demonstrate that the ultrafine
Co3O4 nanoparticles with the main size of 10–20 nm is well-dispersed
and immobilized over the CeN substrate, allowing exposed multiple

active sites for reactants and intermediates in the electrolyte [19,20]. In
accordance with SAED results (Fig. 4c), the legible lattice interspacing
of 4.68, 2.87, 2.35 and 2.04 Å obtained by HRTEM image (Fig. 4d) can
be assigned to the (1 1 1), (2 2 0), (2 2 2) and (4 0 0) crystalline plane of
Co3O4 phase but with a negligible lattice expansion. Remarkably, the
well-resolved crystal defects caused by the lattice distortion and
stacking faults are detected on the exposed facets (1 1 1) of Co3O4

crystalline (Fig. 4e). The existence of crystal defects is demonstrated to
ameliorate the adsorption energy of intermediates for OER [53,29].
Furthermore, the HAADF-STEM image (Fig. 4f) and corresponding EDX
elemental mapping image (Fig. 4g) reveal that the Co, C, O and N
elements have the same distribution profile, suggesting that the Co3O4/
CN HNPs is sufficiently hybridized after an annealing treatment. As for
as-synthesized Co3O4, its mainly exposed crystalline plane (Fig. 4h, i)
and representative SAED patterns (Fig. S6) are consistent with above-
mentioned Co3O4/CN HNPs. But its main nanoparticle size of 20–50 nm
is much larger than that of Co3O4/CN HNPs, illustrating that the in-
troduction of carbonaceous material has a decisive function in disper-
sing anchored Co3O4 nanoparticles, which echoes with the result of
XRD above. Moreover, the EDS analysis as shown in Fig. S7 and Fig. S8,
the mass fraction of Co element of as-synthesized Co3O4 is 70.35%.,
which is approximately equal to the corresponding ICP results (71.82%)
in Table S2. On the other hand, the mass fraction of Co element of
Co3O4/CN HNPs is 45.71% significantly higher than its 38.54% from
ICP results in Table S2. These results conclude that when compared
with the as-synthesized Co3O4, the Co ions are much more favorably
exposed to the surface of Co3O4 in Co3O4/CN HNPs, which is beneficial
to the increase of electrocatalytically active sites for OER.

The X-ray photoelectron spectroscopy (XPS) is employed to gain
further insight into the composition and chemical states of Co3O4/CN
HNPs, as-synthesized Co3O4, and PANI. As seen in Fig. 5a, the corre-
sponding XPS survey spectra clearly demonstrate that the signals of C,
N, Co and O appear in Co3O4/CN HNPs and the signals of Co and O
appear in as-synthesized Co3O4, while the signals of C, N and O appear
in PANI. The high-resolution XPS spectrum of Co 2p is shown in Fig. 5b,
in which two core-level peaks situated at around 705.5 eV and 780.0 eV
are attributed to Co2p1/2 and Co2p3/2, respectively. After deconvolu-
tion for Co2p3/2, the peaks around at 779.2 and 780.9 correspond to the
Co3+ 2p3/2 and Co2+ 2p3/2, respectively. The binding energy of Co 2p3/
2 of Co3O4/CN HNPs exhibits a slightly negative shift, compared with
the as-synthesized Co3O4, thus identifying the existence of interfacial

Fig. 3. SEM images of (a,d) PANI, (b,e) Co3O4/CN HNPs and (c, f) as-synthesized Co3O4.
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electron transfer from Co to N though CoeN coordinate bonds over the
interfacial sites of Co3O4/CN HNPs [54,55]. In addition, the ratio of
Co2+/Co3+ of Co3O4/CN HNPs is calculated to be 0.87, much higher
than that of the as-synthesized Co3O4 (0.42), indicating the existence of
abundant Co2+ species over the Co3O4/CN HNPs, which can be served
as the active sites for OER due to a favorability of formation of OOH*
species over the Co2+ structures [56,57]. Besides, according to the
electroneutrality principle, the increase of Co2+ species is indicative of
the enhanced oxygen vacancies survived on the surface [58]. This result
can be further confirmed by the high-resolution XPS spectrum of O 1s in
Fig. 5c, which is divided into four main characteristic peaks (denoted as
O1, O2, O3 and O4) [59]. Usually, the lowest energy peak at about
529.1–529.6 eV (O1) is indexed to metal-oxygen bond; The peak at
530.8 eV (O2) can be assigned to hydroxy species; The peak at
531.5–531.7 eV (O3) is associated with the surface oxygen vacancies
species; The peak at 532.8 eV (O4) is assigned to the surface-adsorbed
water molecules. Surprisingly, the O3 ratio (44.2%) of Co3O4/CN HNPs
is much higher than that of as-synthesized Co3O4 (28.3%), confirming
that there are more oxygen vacancies remaining over the Co3O4/CN
HNPs [60]. It is noticeable that the electrons located on oxygen va-
cancies defects of Co3O4 are more favorable to excite to the conduction
band, and thus enhance electronic conductivity for Co3O4-containing
materials, which is of great significance and may contribute to im-
proving electrocatalytic performance [47]. The high-resolution XPS

spectrum of N 1s of Co3O4/CN HNPs as shown in Fig. 5d, in addition to
the existence of peaks relative to pyridinic-N (398.5 eV), pyrrolic-N
(400.2 eV), and graphitic-N (401.1 eV), a distinct peak situated at
399.4 eV can be attributed to the CoeNx feature bonds, which is con-
sistent with FTIR results, also further confirming the N elements are
adequately doped into the Co3O4/CN HNPs as expected. Besides, the
pyrrolic-N can function as metal-coordination sites due to their long-
pair electrons while pyridinic-N is believed to approve for the releasing
of O2 molecules for reduction of OER overpotential [53,61]. Moreover,
the N 1s XPS spectrum of PANI (Fig. 5d) contains four main peaks at
398.5 eV, 399.5 eV, 400.7 eV and 402.7 eV, which are attributed to the
quionid imine (eN]), benzenoid imine (-NH-), positively charged
imine (bipolaron state), and protonated amine (polaron state), respec-
tively [62]. Noticeably, the N1s XPS peak of Co3O4/CN HNPs exhibits a
slightly negative shift as compared with the PANI. This is because that
the formation of CoeN coordinate bond of Co3O4/CN HNPs enables the
electrons to transfer from Co to N over the interfacial sites between
Co3O4.nanoparticles and CeN substrate, which corresponds to the in-
crease of electron density in the N species and thus causes the lower
binding energy of N1s XPS peak [47]. Furthermore, the C 1s XPS
spectrum of Co3O4/CN HNPs is also investigated in detail, which can be
divided into four characteristic peaks (Fig. S9a). The main peak at
284.2 eV corresponding to sp2-carbon configuration, while the other
peaks at 285.3 eV, 286.0 eV, and 288.3 eV are ascribed to CeN, CeO

Fig. 4. (a) TEM image, (b) Magnified TEM image, (c) SAED pattern, (d, e) HRTEM images, (h) HADDF-STEM image and (g) EDS elemental mapping images of C, N,
Co, O element of Co3O4/CN HNPs. (h) TEM image and (i) HRTEM image of as-synthesized Co3O4.
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and OeC]O respectively [61], while the C1s XPS spectrum of PANI
(Fig. S9b) can be deconvoluted into three peaks at the binding energy of
284.7 eV, 286.1 eV, and 288.4 eV, which are assigned to C]C/CeC,
CeN and OeC]O, respectively [63]. Noticeably, there are no apparent
negative or positive shifts of the C 1s XPS peak occurring by comparison
between Co3O4/CN HNPs and PANI.

The electrocatalytic OER activity of Co3O4/CN HNPs is examined
though the linear sweep voltammetry (LSV) curves that are recorded
with iR correction in 1.0 M KOH solution using a three-electrode cell,
whereas for comparison, Co3O4, PANI, and IrO2 samples are also ex-
amined under the identical conditions. As illustrated in Fig. 6a, the
polarization curve of Co3O4/CN HNPs presents a lower onset potential
of 1.30 eV vs RHE than that of Co3O4 (1.44 eV), PANI (1.55 eV), and
even IrO2 (1.36 eV). Besides, the Co3O4/CN HNPs only needs an
overpotential of 290 mV to attain a current density of 10 mA cm−2,
much lower than those of Co3O4 (397 mV), PANI (492 mV), and IrO2

(346 mV), revealing a significantly promoted OER activity for Co3O4/
CN HNPs. Impressively, this electrochemical performance can be
comparable or even superior to more noticeable Co3O4-based OER
electrocatalysts as recently reported (Table S1). Moreover, in order to
explore OER kinetics, the Tafel plots are collected by their corre-
sponding LSV curves. As expected, the Tafel plots of as-fabricated cat-
alysts coincide well with the Tafel equation (Fig. 6b). The Tafel plots of
Co3O4/CN HNPs is calculated to be 59 mV dec-1, much smaller than
those of Co3O4 (110 mV dec-1), PANI (172 mV dec-1), and IrO2 (91 mV
dec-1), suggesting a favorable electrochemical OER kinetic occurring at
Co3O4/CN HNPs electrode. Moreover, the electrochemical double layer
capacitance (Cdl) of these three samples is conducted by monitoring CV
scans in the non-Faradaic region as exhibited in Fig. S10a-c, which is
proportional to electrochemically active surface areas (ESCAs) [64]. As

shown in Fig. 6c, the calculated Cdl of Co3O4/CN HNPs, Co3O4, and
PANI are 10.25, 7.34 and 6.78 mF cm−2, respectively, illustrating that
the Co3O4/CN HNPs has a larger ESCA for more exposed active sites
available for OER.

To unveil the charge-transfer mechanism, the electrochemical im-
pedance spectroscopy (EIS) are employed in the 1 M KOH electrolyte
for above-mentioned electrocatalysts as shown in Fig. 6d. There are two
distinct capacitance arcs that are displayed in the plot profile at the
complicated plane in whole frequency domain. The first is regarding the
mass transfer resistance from electrolyte to the exposed active sites in
the high frequency, whereas the second is concerning charge transfer
resistance and equivalent resistance of intermediates at the electrode/
electrolyte interface in the low frequency [65]. The relaxation time of
first semi-circle is much smaller than the second, revealing that either
reaction charge transfer resistance or equivalent resistance of inter-
mediates is predominant in the OER process. To get further insight into
the kinetics of OER process, these all impedance results can be fitted
with equivalent circuit of Rs(CdlRct)(Cp(Rp(QRq))) using both Z-view
software and EIS Spectrum Analyzer program (Fig. 6e) [66–68]. Spe-
cifically, the Rs is the solution resistance; Rdl and Cdl are polarization
resistance and capacitance of double layer, respectively; Cp is the
double layer capacitance formed at the electrode/electrolyte interface;
Rp is the reaction charge transfer resistance across the electrode/elec-
trolyte interface. What’s more, Rq and Q are equivalent resistance and
psedo-capacitance that reflects the adsorption of intermediates at the
working electrode, respectively. Consequently, it illustrates that the
simulated EIS data presents (solid lines) a good match with the ex-
perimental ones (the scatters) (Fig. S11a–c) and the corresponding EIS
fitting parameters are described in Table S3. It is noteworthy that the
fitted Rq rather than Rp is relatively larger in the overall impedance,

Fig. 5. (a) XPS survey. (b) Co2p3/2, and (c) O1s of (I) Co3O4/CN HNPs and (II) as-synthesized Co3O4. (d) N 1s spectra of (I) Co3O4/CN HNPs and (II) PANI.
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suggesting OER kinetics is mainly determined by the equivalent re-
sistance about adsorption of intermediates for these three electro-
catalysts. In this regard, the Co3O4/CN HNPs presents a much lower
equivalent resistance of adsorbed intermediates when compared with
those of as-synthesized Co3O4 and PANI, meaning its favorable forma-
tion of intermediates and rapid change transfer kinetics for OER. Con-
sidering the electrochemical stability of Co3O4/CN HNPs, we observe
no obvious depletion in the current density during continuous opera-
tion for 20 h, whereas for PANI and especially as-synthesized Co3O4, it
is the opposite. It is also detected that there are no changes about ex-
posed lattice plane of Co3O4 nanoparticle in TEM images and corre-
sponding SAED of Co3O4/CN HNPs after 20 h electrochemical stability
measurement (Fig. S12 and Fig. S13). This is, the remarkable structural
stability of Co3O4/CN HNPs caused by the strong interaction is suitable
for its durability in OER. In addition, the Co3O4 is still observed from
XRD pattern of Co3O4/CN HNPs after 20 h electrochemical measure-
ment (Fig. S14), which can be regarded as the stable species for OER in

alkaline environment.

4. Conclusions

In summary, an integrated defect-induced Co3O4/CN HNPs elec-
trocatalyst is successfully synthesized via facile wetness-impregnation
treatment followed by a thermal annealing. In this regard, the gener-
ated microcrystalline graphite structure of Co3O4/CN HNPs is propi-
tious to the improvement of electrical conductivity for OER. It is also
demonstrated that the pyrrolic-N species with long-pair electrons can
function as metal-coordination sites, which can cause the formation of
CoeN coordination bonds through the strong interaction of Co3O4 and
CeN substrate, therefore, the structural stability of Co3O4/CN HNPs
gets to be effectively strengthened and thus contributes to lower im-
migration probability of Co3O4 nanoparticles. Besides, the pyridinic-N
species of Co3O4/CN HNPs is beneficial for releasing of O2 molecules
and reducing OER overpotential. More importantly, there are a number

Fig. 6. (a) Polarization curves of PANI, as-synthesized Co3O4, Co3O4/CN HNPs and IrO2 for OER at a scan rate of 10 mV s−1. (b) The corresponding Tafel plots of
PANI, as-synthesized Co3O4, Co3O4/CN HNPs and IrO2. (c) The current density as a function of the scan rate for PANI, as-synthesized Co3O4 and Co3O4/CN HNPs. (d)
EIS Nyquist plots of PANI, as-synthesized Co3O4 and Co3O4/CN HNPs at a constant potential of 1.52 V vs. RHE. (e) Simulated equivalent circuit simplified model of
the as-obtained catalysts. (f) Time-dependent current density curves of the PANI, as-synthesized Co3O4 and Co3O4/CN HNPs with the set potential of 492 mV, 397 mV
and 290 mV, respectively.
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of crystal defects and oxygen-vacancy defects existing in the Co3O4/CN
HNPs, which help to improve the exposure of the active sites, facilitate
electronic transfer, and optimize the adsorption energy for inter-
mediates, thus enabling the extraordinary activities in catalyzing OER.
In view of these reasons, Co3O4/CN HNPs gets a low overpotential of
290 mV at a current density of 10 mA cm−2 and a small Tafel slope of
59 mV dec-1 in 1 M KOH electrolyte, superior than those of Co3O4,
PANI, and commercial IrO2. The Co3O4/CN HNPs also exhibits good
stability at a current density of 10 mA cm−2 for 20 h.
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