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A B S T R A C T   

Novel compound (AEAF) with both cage-type adamantanes and fluorine-containing structures was synthesized 
from bisphenol AF, 1-adamantyl chloride and epichlorohydrin through successive esterification and O-alkylation 
reaction, which was then introduced into the curing networks of bisphenol A cyanate ester (BADCy) resins 
through copolymerization, to obtain AEAF-co-BADCy resins. AEAF presented low polarizability & dipole density, 
rigid cage adamantane, and stable CF3 group. When the mass fraction of AEAF was 6 wt%, AEAF-co-BADCy resins 
displayed the minimum real part (ε0r), imaginary part (ε”r) of complex permittivity, and dielectric loss tangent 
(tanδ) values, which were 2.49, 0.012, and 0.0048, respectively. And the corresponding wave transmission ef
ficiency (T) was 92.3%, significantly higher than that of pure BADCy (86.6%). AEAF-co-BADCy resins also 
possessed excellent mechanical properties and better interfacial compatibilities with poly(p-phenylene-2,6- 
benzobisoxazole) (PBO) fibers. The corresponding flexural strength (126.5 MPa) and impact strength (15.2 kJ 
m� 2) were increased by 16.6% and 47.6%, in comparison to pure BADCy (flexural strength of 108.5 MPa and 
impact strength of 10.3 kJ m� 2). Meantime, the single fiber pull-out strength of PBO fibers/AEAF-co-BADCy (6 
wt% AEAF) micro-composites also displayed an increase from 3.1 MPa (PBO fibers/BADCy) to 3.4 MPa.   

1. Introduction 

High-performance cyanate ester (CE) resins are widely used in the 
fields of radome, printed circuit board (PCB), and electronic communi
cations, etc [1–4]. Dielectric properties of CE resins are important pa
rameters for evaluating the wave transmission efficiency. In comparison 
to unsaturated polyester (UP) [5], bismaleimide (BMI) [6], polyimide 
(PI) [7], and epoxy resin (EP) [8], CE resins possess better wave trans
mission efficiency due to low dielectric constant (ε, 2.6–3.2) and 
dielectric loss tangent (tanδ, 0.005–0.010) over wide temperatures and 
frequencies ranges [9–11]. What’s more, CE resins not only possess 
excellent heat & chemical resistance, but also high glass transition 
temperature (Tg), low coefficient of expansion, and good processability 
[12–15]. However, with the rapid development of electronic informa
tion technology, high quality CE resins [16] and their composites [17] 

with lightweight, ultra-high wave transmission efficiency (ultra-low ε 
and tanδ values), superior heat & moist heat resistance, and outstanding 
mechanical properties are crucially needed in order to meet the 
increasing requirements for novel wave-transparent polymer 
composites. 

To date, common method for increasing wave transmission effi
ciency of polymers and polymer composites is reducing the values of ε 
and tanδ values [18]. Common approach to decrease ε and tanδ values of 
CE resins is by reducing the density and molecular polarizability of 
polarized molecules [19–21]. For example, introducing nano-sized 
pores into the CE resins, through physical or chemical methods, can 
effectively reduce the density of polarized molecules. Both the meso
porous silica [22,23] and polyhedral oligomeric silsesquioxane (POSS) 
[24,25] display outstanding nano-sized structures and are widely 
applied to decrease the ε and tanδ values of CE resins. Devaraju [22] 
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et al. reported the addition of 10 wt% functionalized mesoporous silica 
(GSBA-15) to CE resins could result in a 24% decrease in the ε value 
(2.53). Jiao [26] et al. synchronously introduced the POSS and meso
porous silica (MPS) into the CE resins to obtain G-POSS-MPS/CE com
posites. And the ε and tanδ values of the G-POSS-MPS/CE composites 
possessing 4 wt% G-POSS-MPS decreased to 2.78 and 0.008, respec
tively, comparing with those of pure CE resins (3.27 and 0.012). 
Although the above methods can effectively reduce the ε and tanδ 
values, the mechanical properties, humidity, as well as heat resistance 
for the modified CE resins are inevitably decreased. In addition, the 
design and construction of porous nanostructures are also relatively 
complicated [27]. 

C–Si and C–F present low polarizability, small dipoles, and large free 
volume [28–31], which can be performed to reduce ε and tanδ values of 
CE resins. Zhang [32] et al. adopted hyperbranched siloxane to modify 
dicyclopentadiene bisphenol cyanate (DCPDCE). The introduction of 
C–Si could significantly reduce the ε and tanδ values. Zhou [33] et al. 
used 2,2-bis(4-hydroxy-phenyl)-1,1,1,3,3,3-hexafluoropropane and 
cyanuric chloride to synthesize novel fluorine-containing triazine-based 
polymers with low ε (2.64) and tanδ (0.0025). In our previous work 
[34], fluorinated compound (TFMPMO) was introduced into the curing 
networks of bisphenol A cyanate ester (BADCy) resins through copoly
merization. Modified BADCy resins possessing 20 wt% of TFMPMO 
demonstrated low ε and tanδ (2.75 and 0.0067), both lower than ε (3.0) 
and tanδ (0.008) of pure BADCy. However, it may cause the severe 
destruction of the triazine network by introducing a large amount of 
low-polarity groups (e.g. C–Si and C–F) into CE resins, thereby reducing 
the final mechanical and thermal properties. 

Cage-type adamantanes possess excellent hydrophobicity, heat 
resistance, chemical stability, and good lipid solubility [35–37]. 
Furthermore, the hydrogen on bridgehead carbons of adamantane pre
sents high activity and can form hydrogen bonds with high electroneg
ative atoms (N and O) [38]. Domagała [39] et al. reported that there 
were two kinds of hydrogen bonding (C–H⋯N and C–H⋯S) in the 
compound containing adamantane and thiazolidine. In addition, the 
adamantane exhibits low ε and tanδ due to highly symmetric 
three-membered aliphatic hydrocarbons [40,41]. And it possesses lower 
cost and easier preparation process [42] compared with that of POSS. Lv 
[43] et al. reported that a class of super low dielectric porous polyimide 
(PI) films possessing adamantane groups were obtained through the 
thermolysis of polyethylene glycol (PEG) oligomers. The porous PI films 
with ultralow ε value of 1.85 at 1 MHz were obtained. Kong [41] et al. 
prepared difunctional and trifunctional adamantane benzocyclobutenes 
(Ada-DVS-BCB and Ada-TVS-BCB), exhibiting low ε (2.5) and tanδ 
(<0.001) over a wide range of frequency. 

In this context, designing novel compounds with both cage-type 
adamantanes and fluorine-containing structures, which are then intro
duced into the curing networks of BADCy resins via copolymerization, is 
expected to obtain the modified BADCy resins with lower ε and tanδ 
values. Herein, we adopted bisphenol AF, 1-adamantyl chloride, and 
epichlorohydrin (ECH) as raw materials to obtain the 4-(1,1,1,3,3,3- 
hexafluoro-2-(4-(epoxy-2-ylmethoxy) phenyl) propan-2-yl) phenyl (3r, 
5r, 7r)-adamantane-1-carboxylate (AEAF) through successive esterifi
cation and O-alkylation reaction. AEAF was analyzed and characterized 
using 1H nuclear magnetic resonance (1H NMR) and Fourier transform 
infrared (FTIR) spectroscopy. Then, AEAF was copolymerized with 
BADCy to prepare the modified BADCy (AEAF-co-BADCy) resins. AEAF 
contents influencing on complex permittivity & tanδ, wave transmission 
efficiency, water absorption, heat resistance, mechanical properties, and 
interfacial compatibility with poly(p-phenylene-2,6-benzobisoxazole) 
(PBO) fibers [44] of the AEAF-co-BADCy resins and their PBO fiber
s/AEAF-co-BADCy micor-composites were investigated. And the wave 
transmission mechanism of the AEAF-co-BADCy resins was also simply 
analyzed. 

2. Experimental part 

2.1. Synthesis of AEAF 

Bisphenol AF (6.72 g, 20 mmol), triethylamine (0.45 g, 4.5 mmol), 
and dichloromethane (30 mL) were introduced to a flask, and the 
mixture was stirred for 30 min in an ice bath under nitrogen protection. 
Then 1-adamantanecarbonyl chloride (0.79 g, 4 mmol) was further 
added into the above reaction mixture and kept stirring for 12 h. The 
solvent was then evaporated. The obtained solid was purified using 
chromatography to yield the ADAF as white powder. 

ADAF (1.50 g, 3 mmol), dried potassium carbonate (0.55 g, 4 mmol), 
ECH (1.38 g, 12 mmol), and acetone (20 mL) were introduced to a flask 
packed with a condenser. The mixture was stirred at 120 �C for 5 h. Then 
the reaction mixture was filtered. And the solvent was removed by ro
tary evaporation to obtain the crude product, followed by purification 
using chromatography to obtain the AEAF as white powder. The sche
matic diagram for synthesis route of AEAF is shown in Scheme 1. 

2.2. Fabrication of AEAF-co-BADCy resins 

A certain amount of AEAF was dissolved into acetone and treated by 
ultrasonic. Meanwhile, BADCy resins were heated to 150 �C.Then the 
prepared AEAF solution was mixed with BADCy resins and stirred for 40 
min at 150 �C. The AEAF/BADCy mixtures were degassed, which was 
then poured into a preheated mold at 150 �C. Consequently, the AEAF/ 
BADCy mixtures were cured according to the procedure of 180 �C/2 h 
þ200 �C/5 h, followed by further cured for 2 h at 220 �C. The schematic 
diagram for preparation of AEAF-co-BADCy resins is illustrated in Fig. 1. 

The information of the “Main materials” and “Characterizations” 
details are presented in the “Supporting Information”. 

3. Results and discussion 

3.1. Structural analyses of ADAF and AEAF 

Fig. 2 displays the 1H NMR (a-c) and FTIR (d) spectra of the 
bisphenol AF, ADAF, and AEAF. In Fig. 2a, three characteristic reso
nances at 9.04, 7.28, and 6.85 ppm are assigned to the protons for Ar-OH 
and benzene ring, corresponding to peaks a, b, and c, respectively. ADAF 
(shown in Fig. 2b) mainly shows proton signals of the adamantane at 
1.27–2.07 ppm and the benzene at 6.82–7.43 ppm. Moreover, the ben
zene rings of ADAF present four protons with different chemical envi
ronments at 6.82, 7.11, 7.25, and 7.43 ppm, ascribed to the change in 
the symmetry of the ADAF structure with introduction of adamantane. 
After the alkylation reaction between ECH and ADAF, the peak at 9.04 
ppm corresponding to phenolic hydroxyl (shown in Fig. 1a–b) disap
pears in Fig. 1c. The chemical shift at 2.41–4.25 ppm is observed, 
ascribed to the protons of epoxy groups. According to Fig. 2d, the band 
around 3300–3400 cm� 1 and 1350-1120 cm� 1 for the bisphenol AF can 
be assigned to the phenolic hydroxyl and –CF3, respectively. Besides, the 
vibration peak of benzene ring presents at 1450-1600 cm� 1. After 
introducing adamantane, new characteristic absorption peaks around 
2930/2850 cm� 1 (–CH2–) and 1760 cm� 1 (–COO–) both appear, mainly 
attributed to the introduction of adamantane and the formation of ester 
bonds. For AEAF, the characteristic absorption peak of epoxy groups 
(940 cm� 1) is also observed. 1H NMR and FTIR analyses indicate that 
AEAF has been prepared. 

3.2. Dielectric properties of AEAF-co-BADCy resins 

ε’
r (a) and ε”

r (b) of the complex permittivity and tanδ (c, ε”
r/ε’

r) 
values of the AEAF-co-BADCy resins are displayed in Fig. 3. From 
Fig. 3a–c, the values of ε’

r, ε”
r, and tanδ for AEAF-co-BADCy resins are 

frequency dependent. ε’
r values for AEAF-co-BADCy resins are lower and 

decrease by increasing the frequency, compared to pure BADCy. 
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Conversely, the ε”
r and tanδ values steadily increase while increase the 

frequency. The reason is that all the polarization (electronic, atomic, and 
orientation polarization) of the AEAF-co-BADCy resins can keep up with 
the changing electromagnetic field and the polarization loss is less. 
However, as the frequency of the electromagnetic waves increases, the 
orientation polarization can no longer catch up with the electric field 
change and then disappears. Thus, the ε0r of AEAF-co-BADCy resins re
duces. When the frequency of the electromagnetic waves is close to the 
natural vibration frequency of the atomic polarization and electron 
polarization, the AEAF-co-BADCy resins can absorb more electric field 
energy, thereby increasing the ε’’r and tanδ. 

In addition, ε’
r, ε”

r and tanδ values for AEAF-co-BADCy resins all 
decrease first and then increase as the content of AEAF increases. When 
the mass fraction of AEAF was 6 wt%, the ε0r, ε”r, and tanδ values for 
AEAF-co-BADCy resins all display the minimum values, which are 2.49, 
0.012, and 0.0048, respectively (10 GHz), and much higher than pure 
BADCy (ε’

r of 2.93, ε”
r of 0.019 and tanδ of 0.0065, 10 GHz). According 

to the Debye theory [34], the ε’
r is essentially related to the amount of 

polarization occurring inner polymer matrix and the ε”
r intrinsically 

reflects the capacity of dielectric loss. On one hand, the CF3 groups 
present lower polarizability and larger free volume. On the other hand, 
the adamantyl groups exhibit nanometer sized holes, which both can 
effectively reduce the polarizability and dipole density, resulting further 
decrease of ε’

r, ε”
r, and tanδ based on Clausius-Mosotti equation [34] 

((Equation (1), the ε decreases with decreasing polarizability and dipole 
density).  

ε ¼ 1þ3Nα/(3ε0 - Nα)                                                                      (1) 

Where, N and α represent the number of molecules per unit dielectric 
volume and polarizability, respectively. However, excessive epoxy 
groups in AEAF (8 wt%) can react with –OCN groups to destroy regular 
structures of triazine-ring and form a large number of polar oxazolidinyl 
structures (shown in Scheme S1). Therefore, the corresponding values of 
ε’

r, ε”
r, and tanδ for AEAF-co-BADCy resins are increased. 

What’s more, when the electromagnetic waves are incident on the 
AEAF-co-BADCy resins, the relationship of reflection coefficient (Г), 
energy loss (A), and wave transmission coefficient (T) is shown in 
Equation (2):  

Г þ A þ T ¼ 1                                                                               (2) 

Г and T are obtained from the network analyzer in form of scattering 
parameter “Smn”, which measures the energy scattering from a material 
or device. Г and T coefficients can be calculated using the Equations (3) 
and (4) [45].  

Г ¼ |S11|2 ¼ |S22|2                                                                            (3)  

T ¼ |S12|2 ¼ |S21|2                                                                            (4) 

Scheme 1. Schematic diagram for synthesis route of AEAF.  

Fig. 1. Schematic diagram of preparation for AEAF-co-BADCy resins.  
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Г and T of the AEAF-co-BADCy resins are illustrated in Fig. 3d–e. Г of the 
AEAF-co-BADCy resins decrease first and then increase as the content of 
AEAF increases, but the change of T is opposite to that of Г. AEAF-co- 
BADCy resins possessing 6 wt% AEAF present the maximum T value of 

92.3% (10 GHz), higher than that of pure BADCy (86.6%). Respective Г 
decreases from 12.8% (pure BADCy) to 6.8% and the corresponding A is 
less than 1%. The reason is that AEAF-co-BADCy resins are the insulator 
(no electrical loss and magnetic loss) and the transmission loss of 

Fig. 2. 1H NMR (a–c) and FTIR (d) spectra of bisphenol AF, ADAF and AEAF.  

Fig. 3. AEAF contents affecting on the ε’
r (a), ε”

r (b) and tanδ (c) values of AEAF-co-BADCy resins; Reflection coefficient (d); Wave transmission efficiency (e); 
Schematic diagram of electromagnetic waves transmission (f). 
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electromagnetic waves is mainly dielectric loss (transmission diagram 
shown in Fig. 3f). In addition, based on the impedance matching theory 
[46], the lower ε’

r values of the AEAF-co-BADCy resins, the smaller the 
difference of impedance between the load phase (AEAF-co-BADCy 
resins) and transport phase (air), which results in weaker interface 
reflection, and further increases the T values. 

3.3. Density and hydrophobicity of AEAF-co-BADCy resins 

Fig. 4 demonstrates the influence of AEAF contents on the density 
(a), water absorption rate (b), and contact angles (c) of the AEAF-co- 
BADCy resins. The density of AEAF-co-BADCy resins is gradually 
decreased with the increasing addition of AEAF. And the density of 
AEAF-co-BADCy resins possessing 6 wt% AEAF is 1.15 g/cm3, which is 
lower in comparison with pure BADCy (1.18 g/cm3). The main reason is 
that the adamantane possesses lower density (1.07 g/cm3), thereby 
effectively reducing the final density of AEAF-co-BADCy resins. In 
addition, excessive AEAF can destroy regular triazine-ring structures 
and reduce packing density of the curing networks, beneficial to 
reducing the density. From Fig. 4b, the water absorption contents of the 
pure BADCy and AEAF-co-BADCy resins improve by prolonging the 
immersion time and become stable after 36 h. This is mainly due to the 
water diffusion from the surface of AEAF-co-BADCy resins into the 
interior, resulting in increased water absorption. When the system rea
ches the saturation state, the water absorption tends to be stable. 
Moreover, at the same dipping time, the water absorption of AEAF-co- 
BADCy resins decreases and the contact angle gradually increases 
(shown in Fig. 4c) with the increase of AEAF amount. Contact angle of 5 
μL water droplets on the AEAF-co-BADCy resins possessing 6 wt% AEAF 
increases to 111.5�, which is higher compared with pure BADCy (95.2�). 
This can be attributed that CF3 presents low surface tension and high 
hydrophobicity [47] and fully aliphatic adamantane-enriched –CH– also 
possesses good hydrophobicity. Thus, AEAF is beneficial to reducing 
surface energy of AEAF-co-BADCy resins (shown in Fig. 4d), resulting in 
higher contact angles and lower water absorption. 

3.4. Thermal properties of AEAF-co-BADCy resins 

Fig. 5 presents the TGA (a) and DMA (b and b’) curves for pure 
BADCy and AEAF-co-BADCy resins. And the corresponding thermal in
formation are summarized in Table 1. Tg values for AEAF-co-BADCy 
resins are determined by peak temperature of tanδ (shown in Fig. 5b’). 
From Table 1, AEAF-co-BADCy resins present higher calculated heat 
resistance index (THRI) compared to pure BADCy. THRI values for AEAF- 
co-BADCy resins increase initially, followed by decreasing as the content 
of AEAF increases. AEAF-co-BADCy resins possessing 6 wt% AEAF pre
sent the maximum THRI value of 217.9 �C, 5.1% higher compared to pure 
BADCy (207.3 �C). The storage modulus (shown in Fig. 5b) and Tg 
(shown in Table 1) values also increase firstly, but then decrease with 
the increasing addition of AEAF. AEAF-co-BADCy resins with 6 wt% 
AEAF possess the maximum Tg value of 276.3 �C, 8.7% higher than that 
of pure BADCy (254.1 �C). The reason is that rigid adamantane and CF3 
present excellent thermal stabilities, beneficial to enhancing the storage 
modulus and heat resistance. Furthermore, the large volume of rigid 
AEAF is embedded into BADCy cross-linking networks via copolymeri
zation, so as to restrict the rotation and movement of the molecular 
chains, resulted in the increased Tg values. However, the excessive 
oxazolinone fragments from polycyanurate networks will reduce THRI, 
storage modulus, and Tg values for AEAF-co-BADCy resins. 

To further elucidate the effects of excessive AEAF contents on 
reducing the Tg of AEAF-co-BADCy resins, Equation (5) for rubbery 
plateau storage modulus at Tg þ 40 �C is used to calculate the cross- 
linking density [48,49], and the calculation results are shown in Fig. 5c.  

dcross-link ¼ E’/2(1 þ γ)RT                                                                 (5) 

Where, E0 is storage modulus of AEAF-co-BADCy resins at temperature T 
(Tgþ40 �C), R represents gas constant, and γ represents Poisson’s ratio, 
which is assumed to be 0.5 for incompressible networks. 

From Fig. 5c, the crosslinking density of AEAF-co-BADCy resins re
duces as the AEAF content increases. On one hand, the decreased 
crosslinking density of AEAF-co-BADCy resins will reduce Tg values. On 
the other hand, a large volume of rigid adamantane restricts the rotation 
and movement of the molecular chains, resulted in increased Tg values. 

Fig. 4. Density (a), water absorption (b) and contact angles (c) of pure BADCy and AEAF-co-BADCy resins.  
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When the amount of AEAF exceeds 6 wt%, the former presents a greater 
effect on the Tg values. Thus, the corresponding Tg values increase 
firstly, but then decrease with the increasing addition of AEAF. 

3.5. Mechanical properties of the AEAF-co-BADCy resins and their 
interfacial compatibilities with PBO fibers 

Fig. 6a shows the amount of AEAF affecting on the mechanical 
properties for AEAF-co-BADCy resins. Flexural strength and impact 
strength of AEAF-co-BADCy resins are steadily increased as the AEAF 

amount increases. In comparison with pure BADCy (108.5 MPa for 
flexural strength and 10.3 kJ m� 2 for impact strength), and AEAF-co- 
BADCy resins possessing 6 wt% AEAF are increased to 126.5 MPa for 
flexural strength and 15.2 kJ m� 2 for impact strength, improved by 
16.6% and 47.6%, respectively. The reason is that the introduction of 
adamantane with rigidity and low ring strain increases the overall ri
gidity of the AEAF-co-BADCy resins, resulted in the enhanced flexural 
strength. Moreover, due to monofunctional epoxy group of AEAF, the 
crosslinking network chain ends at AEAF. Therefore, the large volume of 
AEAF compounds can be regarded as a node inner crosslinking networks 
to effectively transfer stress and prevent crack propagation (shown in 
Fig. 6d–h, the degree of stress whitening and roughness of impact 
fractures), thus increasing the impact strength for AEAF-co-BADCy 
resins. 

Fig. 6b shows the amount of AEAF affecting on the interfacial 
compatibility of PBO fibers/AEAF-co-BADCy micro-composites. Single 
fiber pull-out strength of the micro-composites rises as the AEAF content 
increases. Single fiber pull-out strength of the PBO fibers/AEAF-co- 
BADCy micro-composites with 6 wt% AEAF is increased to 3.4 MPa, 
increased by 9.6%, compared with that of the PBO fibers/BADCy micro- 
composites (3.1 MPa). This is mainly attributed to poor interfacial 
compatibility between BADCy resins and PBO fibers [51,52]. Conse
quently, PBO fibers/BADCy micro-composites present lower single fiber 
pull-out strength (shown in Fig. 6d’, the surface of PBO fibers is very 
smooth and no residual BADCy resins attached). Also, adamantyl group 
has better affinity with benzene ring of PBO fibers. In addition, the 
highly active hydrogen on the bridgehead carbon of the adamantane 
may be combined with N and O of the oxazole ring of the PBO fibers as 
hydrogen bonds (shown in Fig. 6c), which further improves the 

Fig. 5. TGA (a), DMA (b, b’), and crosslinking density (c) of pure BADCy and AEAF-co-BADCy resins.  

Table 1 
Thermal data of pure BADCy and AEAF-co-BADCy resins.  

Samples Weight loss 
Temperature/ 
oC 

THeat-resistance index*/ 
oC 

Tg/oC 

5% 30% 

Pure BADCy 391.3 444.3 207.3 254.1 
2 wt% AEAF-co- 

BADCy 
398.5 449.0 210.1 261.4 

4 wt% AEAF-co- 
BADCy 

404.6 459.3 214.3 266.9 

6 wt% AEAF-co- 
BADCy 

413.6 465.7 217.9 276.3 

8 wt% AEAF-co- 
BADCy 

407.5 462.7 215.9 270.6 

THeat-resistance index ¼ 0.49 � [T5 þ 0.6 � (T30 - T5)] (Equation (6)) [50]. 
T5 and T30 are the corresponding decomposition temperature of 5% and 30% 
weight loss, respectively. 
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interfacial compatibility between the AEAF-co-BADCy resins and PBO 
fibers (shown in Fig. 6e’-h’, the residual AEAF-co-BADCy resins attached 
on the surface of the PBO fibers increase as the amount of AEAF 
increases). 

4. Conclusions 

1H NMR and FTIR analyses indicated that AEAF was successfully 
synthesized and the five-member ring oxazolinoline was formed inner 
crosslinking networks of the AEAF-co-BADCy resins. AEAF with low 
polarizability, dipole density, rigid cage adamantane, and stable CF3 
endued the AEAF-co-BADCy resins excellent comprehensive properties. 
AEAF-co-BADCy resins with 6 wt% AEAF possessed the minimum ε0r, 
ε”r, and tanδ values, which were 2.49, 0.012, and 0.0048, respectively 
(10 GHz). The wave transmission efficiency (T) was 92.3%, significantly 
higher in comparison with pure BADCy (86.6%). Moreover, it presented 
the optimal thermal stability (THRI of 217.9 �C) and the highest Tg value 
(276.3 �C), increased by 5.1% and 8.7%, respectively, in comparison 
with pure BADCy (THRI of 207.3 �C and Tg of 254.1 �C). AEAF-co-BADCy 
resins also displayed excellent mechanical properties and better inter
facial compatibilities with PBO fibers. Flexural strength (126.5 MPa) 
and impact strength (15.2 kJ m� 2) for AEAF-co-BADCy resins possessing 
6 wt% AEAF increased by 16.6% and 47.6%, respectively, in comparison 
with pure BADCy (108.5 MPa for flexural strength and 10.3 kJ m� 2 for 
impact strength). Single fiber pull-out strength of PBO fibers/AEAF-co- 
BADCy micro-composites with 6 wt% AEAF improved to 3.4 MP from 
3.1 MPa for PBO fibers/BADCy micro-composites. 
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